Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats.
نویسندگان
چکیده
The inhalation anesthetic sevoflurane suppresses Per2 expression in the suprachiasmatic nucleus (SCN) in rodents. Here, we investigated the intra-SCN regional specificity, time-dependency, and pharmacological basis of sevoflurane-effects. Bioluminescence image was taken from the SCN explants of mPer2 promoter-destabilized luciferase transgenic rats, and each small regions of interest (ROI) of the image was analyzed. Sevoflurane suppressed bioluminescence in all ROIs, suggesting that all regions in the SCN are sensitive to sevoflurane. Clear time-dependency in sevoflurane effects were also observed; application during the trough phase of the bioluminescence cycle suppressed the subsequent increase in bioluminescence and resulted in a phase delay of the cycle; sevoflurane applied during the middle of the ascending phase induced a phase advance; sevoflurane on the descending phase showed no effect. These results indicate that the sevoflurane effect may depend on the intrinsic state of circadian machinery. Finally, we examined the involvement of GABAergic signal transduction in the sevoflurane effect. Co-application of both GABAA and GABAB receptor antagonists completely blocked the effect of sevoflurane on the bioluminescence rhythm, suggesting that sevoflurane inhibits Per2 expression via GABAergic signal transduction. Current study elucidated the anesthetic effects on the molecular mechanisms of circadian rhythm.
منابع مشابه
Direct and Specific Effect of Sevoflurane Anesthesia on rat Per2 Expression in the Suprachiasmatic Nucleus
BACKGROUND Our previous studies revealed that application of the inhalation anesthetic, sevoflurane, reversibly repressed the expression of Per2 in the mouse suprachiasmatic nucleus (SCN). We aimed to examine whether sevoflurane directly affects the SCN. METHODS We performed in vivo and in vitro experiments to investigate rat Per2 expression under sevoflurane-treatment. The in vivo effects of...
متن کاملEstablishment of an in vitro cell line experimental system for the study of inhalational anesthetic mechanisms.
General anesthesia affects the expression of clock genes in various organs. Expression of Per2, a core component of the circadian clock, is markedly and reversibly suppressed by sevoflurane in the suprachiasmatic nucleus (SCN), and is considered to be a biochemical marker of anesthetic effect in the brain. The SCN contains various types of neurons, and this complexity makes it difficult to inve...
متن کاملEffect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo
BACKGROUND In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plaus...
متن کاملEpigenetic Suppression of Mouse Per2 Expression in the Suprachiasmatic Nucleus by the Inhalational Anesthetic, Sevoflurane
BACKGROUND We previously reported that sevoflurane anesthesia reversibly suppresses the expression of the clock gene, Period2 (Per2), in the mouse suprachiasmatic nucleus (SCN). However, the molecular mechanisms underlying this suppression remain unclear. In this study, we examined the possibility that sevoflurane suppresses Per2 expression via epigenetic modification of the Per2 promoter. ME...
متن کاملCircadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice
In mammals, the temporal order of physiology and behavior is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Rhythms are generated in cells by an auto-regulatory transcription/translation feedback loop, composed of several clock genes and their protein products. Taking advantage of bioluminescence reporters, we have succeeded in continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره 107 شماره
صفحات -
تاریخ انتشار 2016